
GraphicsMagick in FileMaker

GraphicsMagick in FileMaker, part 1

Welcome to the first door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component. Every day I will present
you one or more functions from this
component. In this component you
will find functions with which you can
analyze images, convert them,
change them with filters, draw on
them and much much more. In the
end, you can also take the magic of
GraphicsMagick to your images. I
wish you a lot of fun with it.
Today I will show you how to load an
image from a file or container so that
you can edit it in the later doors.
When loading an image we have the
possibility to load it from a container.
For this we use the
GMImage.NewFromContainer
function. We pass the container to
this function in the parameters. With
this we load the image into the working memory and get a reference
number as return which we can use in the other steps.
Set Variable [$ref1 ; Value:
MBS("GMImage.NewFromContainer"; GraphicsMagick
Advent::Image)]

If we have an image file with multiple images in a container, we have
the function GMImage.NewImagesFromContainer that gives us a list of
reference numbers. Each image in the container is loaded into memory
and has its own reference number.
Set Variable [$ref2 ; Value:
MBS("GMImage.NewImagesFromContainer"; GraphicsMagick
Advent::Image)]

🎄
1 of 24

https://www.mbsplugins.de/archive/2022-12-01/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageNewImagesFromContainer.shtml
https://www.mbsplugins.eu/GMImageNewImagesFromContainer.shtml

The image cannot only be a container value, but also a file on your
computer. You can then load this via the file path. We use the
GMImage.NewFromFile function for this. We specify the native path in
the parameters. If you have a FileMaker path, the path must first be
converted to a native path. Then use the
Path.FileMakerPathToNativePath function to do this. If you want, you
can optionally specify a codec here that will take care of decoding the
image.
Set Variable [$ref3 ; Value: MBS("GMImage.NewFromFile"; "/
Users/sj/Desktop/IMG_4420.jpeg"; "JPEG")]

Also to this function there is of course a function that if we have several
images in a file, loads these images into memory and returns us a list
of references. This function is called GMImage.NewImagesFromFile.
Images can now not only be a file or container value, but also encoded
as a string. We can use the functions GMImage.NewFromBase64 and
GMImage.NewFromHex to receive image data as a hexadecimal string
or a base64 string. The images are decoded and loaded into memory in
the same way as the other functions and as return we get the reference
number.
Set Variable [$ref4 ; Value: MBS("GMImage.NewFromBase64";
GraphicsMagick Advent::Text)]
Set Variable [$Ref5 ; Value: MBS("GMImage.NewFromHex";
GraphicsMagick Advent::Text)]

Before I leave you excited about door number two, I would like to
explain one very important thing about working with GraphicsMagick.
We store our image references in memory. If we create a new image
reference then again a piece of memory is allocated. So that we don't
block our memory now we free the memory when we don't need the
reference anymore. We can do this with the function GMImage.Release
for a single reference by specifying the reference number to be released
in the parameters, or for all reference numbers with the function
GMImage.ReleaseAll.
Set Variable [$r ; Value: MBS("GMImage.Release"; $ref1)]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]

Tomorrow we will continue. I wish you a nice first of December.

https://www.mbsplugins.eu/GMImageNewFromFile.shtml
https://www.mbsplugins.eu/PathFileMakerPathToNativePath.shtml
https://www.mbsplugins.eu/GMImageNewFromFile.shtml
https://www.mbsplugins.eu/GMImageNewImagesFromFile.shtml
https://www.mbsplugins.eu/GMImageNewFromBase64.shtml
https://www.mbsplugins.eu/GMImageNewFromHex.shtml
https://www.mbsplugins.eu/GMImageNewFromBase64.shtml
https://www.mbsplugins.eu/GMImageNewFromHex.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml

GraphicsMagick in FileMaker, part 2

Welcome to the second door of our
advent calendar in this advent
calendar. I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, you can
draw them and much much more. In
the end, you can also take the magic of
GraphicsMagick to your images. I wish
you a lot of fun with it.
Today I want to find out with you some
information about the loaded images.
We will start with the size of the
images. So we want to find out height
and width. First we load our image into
memory as we saw it yesterday. In our
example there is a single image in the
container.
Set Variable [$GM ; Value:
MBS("GMImage.NewFromContainer"; GraphicsMagick
Advent::Image)]

Now we can retrieve different information. The width with the function
GMImage.GetWidth and the height with GMImage.GetHeight function.
The reference is passed to the functions in the parameters and we then
get back the desired value.
Set Variable [$Width ; Value: MBS("GMImage.GetWidth";
$GM)]
Set Variable [$Height ; Value: MBS("GMImage.GetHeight";
$GM)]
We can also get the height and width directly in one step. For this we
use the function GMImage.GetSize. Here we get width and height
separated with an X as result.
Set Variable [$Size ; Value: MBS("GMImage.GetSize";
$GM)]

🎄
2 of 24

https://www.mbsplugins.de/archive/2022-12-02/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageGetWidth.shtml
https://www.mbsplugins.eu/GMImageGetHeight.shtml
https://www.mbsplugins.eu/GMImageGetWidth.shtml
https://www.mbsplugins.eu/GMImageGetHeight.shtml
https://www.mbsplugins.eu/GMImageGetSize.shtml
https://www.mbsplugins.eu/GMImageGetSize.shtml

Besides the size, we can also query other information about the image,
e.g. what file format does the image have? We can easily answer this
question with the function GMImage.GetMagick, because it gives us the
codec used.
Set Variable [$FileTyp ; Value: MBS("GMImage.GetMagick";
$GM)]

With the function GMImage.GetDensity we query the resolution. We get
the resolution of the width and the height again separated by an x.
Set Variable [$Resolution ; Value:
MBS("GMImage.GetDensity";$GM)]

The file name can be queried with GMImage.GetFileName.
Set Variable [$FileName ; Value:
MBS("GMImage.GetFileName"; $GM)]

Also the file size can be determined with the function
GMImage.GetFileSize.
Set Variable [$FileSize ; Value:
MBS("GMImage.GetFileSize"; $GM)]

Here you can see how a dialog can look like if we print the information
in the dialog.

https://www.mbsplugins.eu/GMImageGetMagick.shtml
https://www.mbsplugins.eu/GMImageGetMagick.shtml
https://www.mbsplugins.eu/GMImageGetDensity.shtml
https://www.mbsplugins.eu/GMImageGetDensity.shtml
https://www.mbsplugins.eu/GMImageGetFileName.shtml
https://www.mbsplugins.eu/GMImageGetFileName.shtml
https://www.mbsplugins.eu/GMImageGetFileSize.shtml
https://www.mbsplugins.eu/GMImageGetFileSize.shtml

GraphicsMagick has many more functions that you can use to get
information about your images. Please have a look. I wish you a nice
2nd December and I am looking forward to seeing you tomorrow.

GraphicsMagick in FileMaker, part 3

Welcome to the third door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
So far we have requested information
from images, But later in December we
would like to change the images and
would like to see this change when we
put a filter on the image, for example.
For this we need to be able to write the
edited image which is in our working
memory back to a file. How this works I
will show you today. First we think
about where we want to have our file. Do we want to write it into a file
or into a container, for both we need again different functions.
Let's start with the case that we want to write the image into a file. For
this we use the function GMImage.WriteToFile. This function writes a
single image to the disk in the parameters we specify the image
reference and the path to which the image should be saved. If you want
to let the user choose in a dialog where to save the file you can use the
functions from the FileDialog component. With these functions you can
customize your save dialog by adding a text, a heading and many other
settings. After selecting a file we can then get the file path and save the
image with the GMImage.WriteToFile function to the specified location.
In the script example we have used such a dialog.
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("FileDialog.Reset")]
Set Variable [$r ; Value: MBS("FileDialog.SetWindowTitle";
"Save the image")]
Set Variable [$r ; Value: MBS("FileDialog.SetMessage";
"Where should the image be saved?")]

🎄
3 of 24

https://www.mbsplugins.de/archive/2022-12-03/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageWriteToFile.shtml
https://www.mbsplugins.eu/GMImageWriteToFile.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/FileDialogReset.shtml
https://www.mbsplugins.eu/FileDialogSetWindowTitle.shtml
https://www.mbsplugins.eu/FileDialogSetMessage.shtml

Set Variable [$r ; Value:
MBS("FileDialog.SaveFileDialog")]
Set Variable [$Path ; Value: MBS("FileDialog.GetPath"; 0)]
Set Variable [$Path ; Value: $Path & ".png"]
Set Variable [$r ; Value: MBS("GMImage.WriteToFile"; $GM;
$Path)]
Set Variable [$r ; Value: MBS("GMImage.Release"; $GM)]
We have our image reference in the variable $GM. First, we reset all the
existing settings of the dialog so that we don't take any legacy with us.
The dialog gets a window title with the text "Save the image"" and the
message "Where should the image be saved?"
We have decided to use the save dialog because we want to write a file
to the disk and so we only adapt the standard save dialog from the
operating system to our wishes. For this we use the function
FileDialog.SaveFileDialog. We get the path we selected with the function
FileDialog.GetPath. Since you can also select multiple files directly with
a file dialog we have to specify an index with this function to determine
how many paths we want. We want the first one and for this reason we
specify 0, because in the MBS FileMaker Plugin we start counting
indexes at 0. We still need to specify what type our file should be,
otherwise a text file will be written with the image. For file path we
simply append the sufix, here png. Now we can use the function to
write it to the disk and of course release the reference again.
If we have several references at the same time, we can also write them
directly to the disk in one step. For this we use the
GMImage.WriteImages function. In the parameters we specify a list
with the references, then again the path to which we want to save the
images. Last but not least we can decide if we want to save the images
as single files or if we want to write the images into a multi image tiff
file.
We can also put an image directly into a container. We use the
GMImage.WriteToContainer function. In the parameters we first specify
the reference and then the file name. With this function we can choose
before which format our image should have. For this we use
GMImage.SetMagick before this function. Here we also specify the
reference and the type.
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("GMImage.SetMagick"; $GM;
"PNG")]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]

If you already know in detail which file format your image should have
in the container, then you can use one of our special functions that we

https://www.mbsplugins.eu/FileDialogSaveFileDialog.shtml
https://www.mbsplugins.eu/FileDialogGetPath.shtml
https://www.mbsplugins.eu/GMImageWriteToFile.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml
https://www.mbsplugins.eu/FileDialogSaveFileDialog.shtml
https://www.mbsplugins.eu/FileDialogGetPath.shtml
https://www.monkeybreadsoftware.com/filemaker/
https://www.mbsplugins.eu/GMImageWriteImages.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageSetMagick.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageSetMagick.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml

offer for some file formats. The functions have the same parameters as
the main function. Here is a list of these special functions:

• GMImage.WriteToBMPContainer
• GMImage.WriteToGIFContainer
• GMImage.WriteToJPEGContainer
• GMImage.WriteToPDFContainer
• GMImage.WriteToPNGContainer
• GMImage.WriteToTiffContainer

We'll be using the functions we learned about today often during the
Advent calendar. I hope you enjoyed the third door and I will see you
here again tomorrow for door number four.

https://www.mbsplugins.eu/GMImageWriteToBMPContainer.shtml
https://www.mbsplugins.eu/GMImageWriteToGIFContainer.shtml
https://www.mbsplugins.eu/GMImageWriteToJPEGContainer.shtml
https://www.mbsplugins.eu/GMImageWriteToPDFContainer.shtml
https://www.mbsplugins.eu/GMImageWriteToPNGContainer.shtml
https://www.mbsplugins.eu/GMImageWriteToTiffContainer.shtml

GraphicsMagick in FileMaker, part 4

Welcome to the fourth door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Today I will show you how to paint a
border around an image. The focus is
on the GMImage.Border function. This
function again requires our reference.
Set Variable [$r ; Value:
MBS("GMImage.Border"; $GM)]
When we use the function like this, a
gray fine border is drawn around the
image by default. If the image is very
large, as you can see here, it is not so noticeable.

🎄
4 of 24

https://www.mbsplugins.de/archive/2022-12-04/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageBorder.shtml
https://www.mbsplugins.eu/GMImageBorder.shtml

But we can change that. In the function itself we can change the
thickness of the frame by specifying a geometry and we can change the
color of the frame. Let's start with the thickness of the border. In a
geometry we specify a width and height. In our case the thickness of
the border. The two values are separated from each other with an x. If
I enter as geometry e.g. 200x0 then our frame looks like this.
Set Variable [$r ; Value: MBS("GMImage.Border";$GM;
"200x0")]

https://www.mbsplugins.eu/GMImageBorder.shtml

Left and right we have now a frame of 200 pixel. If we invert the
values, we get a frame at the top and bottom.
But we can change not only the thickness of the border, but also the
color. The color must be set before we paint the border. For this we use
the GMImage.SetBorderColor function. In the parameters we specify
the reference and the color. The color can be specified in different color
spaces. Here you can see a list of the color spaces that are possible:

• HSL h s l a
• YUV y u v a
• RGB r g b a
• MONO m a
• GRAY g a
• COLOR R G B a

also you can specify a color value as a hexadecimal number. As you can
see, you can also always define an alpha value, which means we define
the transparency. This value is between 0.0 and 1.0.
Set Variable [$GM ; Value: MBS("GMImage.NewFromFile"; "/
Users/sj/Desktop/abc.png")]
Set Variable [$r ; Value: MBS("GMImage.SetBorderColor";
$GM; "#FF000034")]
Set Variable [$r ; Value: MBS("GMImage.Border";$GM;
"200x200")]

https://www.mbsplugins.eu/GMImageSetBorderColor.shtml
https://www.mbsplugins.eu/GMImageNewFromFile.shtml
https://www.mbsplugins.eu/GMImageSetBorderColor.shtml
https://www.mbsplugins.eu/GMImageBorder.shtml

Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.Release"; $GM)]
In the example code I have defined a hexadecimal number that
describes a color that is red and has a high transparency. The result
looks like this.

Of course, you can choose the colors that you like. Here you see for
example a picture with a purple (#6959CD) frame. The frame has the
size 500x500.

https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml

So give your pictures the frame you need. Tomorrow we will continue.
Until then have a nice 4th of December

GraphicsMagick in FileMaker, part 5

Welcome to the 5th door of our advent
calendar. In this advent calendar I
would like to take you on a journey
through the GraphicsMagick component
in December. Every day I will introduce
you to one or more functions from this
component. In this component you will
find functions with which you can
analyze images, convert them, change
them with filters, draw them and much
much more. In the end, you too can
take the magic of GraphicsMagick to
your images. I wish you a lot of fun in
the process.
Today I would like to show you how
you can scale an image according to
your wishes. For this we use the
GMImage.Scale function. In the
parameters you have to enter the
reference and a geometry. The
geometry can look like the geometry
we already know (width x height), but
we can now also define other things in the geometry and are not limited
to a fixed size of the image. So that you can try it yourself we have
created a field in the sample file (This will be available on December
24) in which you can enter the geometry to test it. The script looks like
this. We always load a fresh image from a file and then scale it with the
function. In our container, the image is then scaled, we save the image
there as usual and release the reference again.
Set Variable [$GM ; Value: MBS("GMImage.NewFromFile"; "/
Users/sj/Desktop/abc.png")]
Set Variable [$r ; Value: MBS("GMImage.Scale"; $GM;
GraphicsMagick Advent::GeometrieScal)]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.Release"; $GM)]
Let's first try the geometry we already know. I have entered 500x100
in the text field. The image is then scaled so that the smaller of the two
values is assumed, so the image gets a height of 100 and the width is
scaled proportionally. For example, if we were to specify 50 for the
width and 100 for the height, then the image would adjust to the 50
and scale the height proportionally.

🎄
5 of 24

https://www.mbsplugins.de/archive/2022-12-05/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageScale.shtml
https://www.mbsplugins.eu/GMImageNewFromFile.shtml
https://www.mbsplugins.eu/GMImageScale.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml

What do we do now, if we really want to bring the picture exactly to the
size, without keeping the proportions? In this case we add an
exclamation mark at the end. This means that the image will be scaled
exactly to this size.

We can work not only with fixed values but also with percentage values.
For example, if we want the side lengths to be only 10% of the actual
lengths, we enter 10% here. Both sides are then only 1/10 of the actual
size. If we have an image with the dimensions 4032x3024, the image
will be 403x302. With one value the proportions are kept.

However, we can also specify two values, e.g. if the image should have
10% of the original width and 50% of the original height. In this case,
the proportions are not kept.

We can also specify that an image should only be scaled if it is larger or
smaller than the specified geometry. For this we specify < and> at the
end. If the image should be scaled to an image if it is larger than the
specified large, then we specify a > sign. If the image should be scaled
when it is smaller than the specified size, we take a < sign. Our original
is 4032x3024 so the image will be scaled if we define the geometry as:
500x100>.

I hope your pictures get into shape with this multifaceted function. Be
there again tomorrow when everything revolves around the image
again

GraphicsMagick in FileMaker, part 6

Welcome to the 6th door of our advent
calendar. In this advent calendar I
would like to take you on a journey
through the GraphicsMagick component
in December. Every day I will introduce
you to one or more functions from this
component. In this component you will
find functions with which you can
analyze images, convert them, change
them with filters, draw them and much
much more. In the end, you too can
take the magic of GraphicsMagick to
your images. I wish you a lot of fun in
the process.
Today we want to rotate the image and
for this we use the function
GMImage.Rotate. In the parameters we
first specify the reference and then the
number of degrees by which we want
to rotate the image. The image will be
rotated clockwise if the degree is
positive and counterclockwise if the
degree is negative. In our example file, I have included two buttons
that rotate the image clockwise and counterclockwise. Both buttons call
the same script. When pressing the buttons, different script parameters
are passed, so we know which button was pressed. Clockwise passes
the 0 and counterclockwise passes the 1. By how many degrees we
want to rotate the image we specify in the appropriate field. The script
looks like this:
Set Variable [$direction ; Value: Get(ScriptParameter)]
If [$direction=1]
 Set Variable [$degrees ; Value: Abs (GraphicsMagick
Advent::RotationDegree)*-1]
Else
 Set Variable [$degrees ; Value: Abs (GraphicsMagick
Advent::RotationDegree)]
End If
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("GMImage.Rotate"; $GM;
$degrees)]

🎄
6 of 24

https://www.mbsplugins.de/archive/2022-12-06/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageRotate.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageRotate.shtml

Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.Release"; $GM)]
So we first get the parameter that gives us the direction. If it is a 1
then we get the amount of degrees that is in the field and multiply it by
-1 since the button was pressed counterclockwise. We take the amount
so that in case the user entered a negative number we would still rotate
counterclockwise. A negative number multiplied by -1 would otherwise
result in a positive number and we would rotate clockwise again. If the
script parameter was not 1, it can only be a zero or the script was
started otherwise and in these two cases we want to rotate clockwise.
Before we can rotate the image, we must first load the image from the
container into a reference and then we can apply the rotation to it. As
we already know, the image is then saved again and the reference is
released.

I hope you are looking at your pictures from the right angle now. I hope
you have fun trying it out. Let's see tomorrow if our image fits as well
as today.

https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml

GraphicsMagick in FileMaker, part 7

Welcome to the 7th door of our advent
calendar. In this advent calendar I
would like to take you on a journey
through the GraphicsMagick component
in December. Every day I will introduce
you to one or more functions from this
component. In this component you will
find functions with which you can
analyze images, convert them, change
them with filters, draw them and much
much more. In the end, you too can
take the magic of GraphicsMagick to
your images. I wish you a lot of fun in
the process.
Today I want to show you how to crop
an image. For this we use the
GMImage.Crop function. This function
returns an image section that you have
to define in the parameters before. As
with the other functions, we first
specify the reference and then a
geometry. The geometry describes the
cut-out from the image. First we can define how big such a section
should be - again in pixels. First the width and then the height which we
separate from each other with an x. But now we don't only want to
define the size of the section, but also the position. For this reason we
have to set the offsets for X and Y in addition to the size information.
The offsets determine the distance from the upper left edge. If we set a
value for X we move away from the side edge, if we set a value for Y
we move away from the top border. These two values can be appended
with a plus. We will make an example now. We would like to crop the
image so that it is square and shows the center of the image. Here we
see the code:
Set Variable [$GM ; Value: MBS("GMImage.NewFromFile"; "/
Users/sj/Desktop/abc.png")]
Set Variable [$Width ; Value: MBS("GMImage.GetWidth";
$GM)]
Set Variable [$Height ; Value: MBS("GMImage.GetHeight";
$GM)]
If [$Width>$Height]
 # Landscape
 Set Variable [$Size ; Value: $Height & "x" & $Height]

🎄
7 of 24

https://www.mbsplugins.de/archive/2022-12-07/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageCrop.shtml
https://www.mbsplugins.eu/GMImageNewFromFile.shtml
https://www.mbsplugins.eu/GMImageGetWidth.shtml
https://www.mbsplugins.eu/GMImageGetHeight.shtml

 Set Variable [$OffsetX ; Value: Round(($Width -
$Height) / 2; 0)]
 Set Variable [$OffsetY ; Value: 0]
Else
 # Portrait
 Set Variable [$Size ; Value: $Width & "x" & $Width]
 Set Variable [$OffsetX ; Value: 0]
 Set Variable [$OffsetY ; Value: Round(($Height - $Width
) / 2; 0)]
End If
Set Variable [$Geometry ; Value: $Size & "+" &$OffsetX& "+"
&$OffsetY]
Set Variable [$r ; Value: MBS("GMImage.Crop"; $GM;
$Geometry)]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.Release"; $GM)]
First, we again get an image file as a reference and queries height and
width. We must of course be able to distinguish whether the image is in
portrait or landscape orientation. If it is a landscape format image, so
the width is greater than the height, then we want to specify the size of
the image as heightxheight. Please note, that we use Round() here to
make sure we have a whole number.

https://www.mbsplugins.eu/GMImageCrop.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml

As the picture is wider, we now have to set the crop to the center, so
we see in the picture that we have to move a certain number of pixels
away from the edge. This is then the X Offset. The value for the X
Offset results from the difference between width and height. Since we
want to have the same distance on both sides, we divide this distance
by two and get our value. Since we don't need a Y-Offset in this case,
we set the value to 0. For a portrait image we have exactly the opposite
case, we set the size with widthxwidth.The X offset is 0 and the Y
offset is the difference between height and width divided by 2
The geometry is then composed as described:
Side dimension x Side dimension+OffsetX+OffsetY
Then the crop function is applied, the image is placed in the container,
and then the reference is released again.

Our picture is now square. I hope you enjoyed this door and see you
tomorrow at the next door

GraphicsMagick in FileMaker, part 8

Welcome to the 8th door of our advent
calendar. In this advent calendar I
would like to take you on a journey
through the GraphicsMagick component
in December. Every day I will introduce
you to one or more functions from this
component. In this component you will
find functions with which you can
analyze images, convert them, change
them with filters, draw them and much
much more. In the end, you too can
take the magic of GraphicsMagick to
your images. I wish you a lot of fun in
the process.
Today I would like to show you how to
convert your image into a black and
white image or how to display it in
grayscale. Let's start with the
grayscale. For this we use the function
GMImage.SetType. This function sets
the repression type of the image. We
can specify the following values:

• UndefinedType = 0
• BilevelType = 1
• GrayscaleType = 2
• GrayscaleMatteType = 3
• PaletteType = 4
• PaletteMatteType = 5
• TrueColorType = 6
• TrueColorMatteType = 7
• ColorSeparationType = 8
• ColorSeparationMatteType = 9
• OptimizeType = 10

You can do very cool things with these types. We are only interested in
the value two, because with it we can convert an image from a color
image to a grayscale image. You can see the script for this here:

🎄
8 of 24

https://www.mbsplugins.de/archive/2022-12-08/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageSetType.shtml

Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("GMImage.SetType"; $GM;
2)]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]

But with this function we can't make the image only black and white,
for that we need another function, the GMImage.Threshold function. If
you want to convert an image into a black and white image then it is
enough to pass the image reference to this function.

https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageSetType.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml
https://www.mbsplugins.eu/GMImageThreshold.shtml

With this function we can set the value from which a color is interpreted
as white. For this we have the optional parameter Threshold. The
values of this threshold can be between 0 (everything is interpreted as
white) and 65535 (everything is interpreted as black). Here you can see

the image with a threshold of 50,000. The branches which are paler and
cannot be seen at all with the default value are clearly displayed.

In the next image we have chosen a threshold of 12,500 here we see
lighter areas in the forest floor.

Try it out and get creative. Hope to see you again tomorrow for the
opening of the next door.

GraphicsMagick in FileMaker, part 9

Welcome to the 9th door of our advent
calendar. In this advent calendar I
would like to take you on a journey
through the GraphicsMagick component
in December. Every day I will introduce
you to one or more functions from this
component. In this component you will
find functions with which you can
analyze images, convert them, change
them with filters, draw them and much
much more. In the end, you too can
take the magic of GraphicsMagick to
your images. I wish you a lot of fun in
the process.
Today I'm going to tell you a little bit
about a function that is quite
inconspicuous, but once provided me
with great services. I got from a
customer at the very beginning of my
FileMaker time the order that I should
sort out all pages from a scanned PDF
file that are empty. I accepted the
order and thought, that can't be difficult, there must be a simple
function you can use to detect if the page is empty or not. What can I
say it wasn't that easy and I was thinking for a long time about how to
do it until I found the GMImage.AveragePixelValue function. This
function gets the average color value of pixels in an image or a certain
area which can be defined with optional parameters in the function.
...
Set Variable [$AveragePixelValue ; Value:
MBS("GMImage.AveragePixelValue"; $GM; 0; 0; $imageWidth;
$imageHeight)]
 If [$AveragePixelValue < ,99]
 Set Variable [$r ; Value:
MBS("DynaPDF.AppendImagePages"; $pdf; $currentPicturePath)
]
...
Before inserting the pages as images into a PDF with DynaPDF, the
images of the pages scanned by the scanner were available as
container values, so I could simply load them into memory as
reference. Of course you can use the GMImage.Threshold function
again to convert an image to a black and white copy. The

🎄
9 of 24

https://www.mbsplugins.de/archive/2022-12-09/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageAveragePixelValue.shtml
https://www.mbsplugins.eu/GMImageAveragePixelValue.shtml
https://www.mbsplugins.eu/DynaPDFAppendImagePages.shtml
https://www.mbsplugins.eu/GMImageThreshold.shtml

GMImage.AveragePixelValue function returns a value between 0 and 1
that tells us if the image is more or less black or white. Of course, if you
scan with a normal scanner, not everything is white when the page is
blank. It could be a bend of the paper, it could be because the paper
had a yellow tone and so some pixels are interpreted as black pixels. So
we have to define a limit from when we say the page is blank or the
page is printed. The best way to find such a threshold is to look at the
values of scanned sample pages. The more white is on the page the
higher is the value. I chose a value of 0.99, which still allows some
wrinkles, but if there is a certain amount of text on the page, the page
will not be sorted out.

After I finished this check the image was added to a DynaPDF
document with DynaPDF.AppendImagePages. When using the
GMImage.AveragePixelValue function you have to make sure that the
image is in RGB format. For this reason it is recommended to use the
GMImage.SetType function which is passed the type 6 for
TrueColorType in the parameters. We have already seen the use of this
function yesterday in connection with a grayscale image.
I hope the function can help you, as it helped me back then. I would
be happy if we meet again tomorrow and make you text confident.

https://www.mbsplugins.eu/GMImageAveragePixelValue.shtml
https://www.mbsplugins.eu/DynaPDFAppendImagePages.shtml
https://www.mbsplugins.eu/GMImageAveragePixelValue.shtml
https://www.mbsplugins.eu/GMImageSetType.shtml

GraphicsMagick in FileMaker, part 10

Welcome to the 10th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Today we want to write a text in our
image. For this we use the function
GMImage.Annotate. As in most
functions, we first specify the
reference, then the text follows.
Optionally we can specify where exactly
the text should be, the area we specify
in the same way as in door 7 for the
image section. First the size in pixels
and then the x and y offset (widthxheight+offsetX+offsetY). We can
also set the text alignment. Last but not least, we can even specify that
the text should be rotated by a certain number of degrees. If you want
you can set not only the text, but also the font, the color of the text,
the font size, the color of the text border and the thickness of the text
border. For these individual settings we have one function each. It is
best if we look directly at the sample code together.

Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("GMImage.SetFont"; $GM;
"Georgia")]
Set Variable [$r ; Value: MBS("GMImage.SetFillColor";$GM;
"#FF0000")]
Set Variable [$r ; Value: MBS("GMImage.SetLineWidth"; $GM;
2)]
Set Variable [$r ; Value: MBS("GMImage.SetStrokeColor";
$GM; "#287233")]

🎄
10 of 24

https://www.mbsplugins.de/archive/2022-12-10/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageAnnotate.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageSetFont.shtml
https://www.mbsplugins.eu/GMImageSetFillColor.shtml
https://www.mbsplugins.eu/GMImageSetLineWidth.shtml
https://www.mbsplugins.eu/GMImageSetStrokeColor.shtml

Set Variable [$r ; Value: MBS("GMImage.SetFontPointsize";
$GM; 100)]
Set Variable [$Width ; Value: MBS("GMImage.GetWidth";
$GM)]
Set Variable [$r ; Value: MBS("GMImage.Annotate"; $GM;
"Merry Christmas"; $Width&"x200+0+20"; "CenterGravity"; -10)
]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]

We want to display a text centered on the upper part of an image. First
we set the font we want to use for the text. For this we can use the
function GMImage.SetFont. In addition to the reference, we specify the
name of the font here. We can also set the color of the font. The color
of the font consists of two components: the fill color, which we can
specify with GMImage.SetFillColor by specifying the reference and the
color, in this case red, and the line color. The line color is the border of
the font, here dark green. We can set this in the function
"GMImage.SetStrokeColor. Also we can set the thickness of the border
with GMImage.SetLineWidth. To set the size of the font we use the
GMImage.SetFontPointsize in our example the font is 100 pt. Before we
write to the image we determine the width of the image, because we
define our text field in the function GMImage.Annotate over the whole
width of the image. In addition, the writing area should have a height of
200 pixels. Since we have defined the width of the text box across the
entire width of the image, we don't need an x-offset here, but we do
want to move 20 pixels away from the top edge. We set the text
aligment to CenterGravity so that we display the text centered. We also
want the text to run at a little bit of an upward slant. For this reason we
rotate the text 10 degrees counterclockwise. For this we have -10 in
our script and we set the text to Merry Christmas. Our result now looks
like this:

https://www.mbsplugins.eu/GMImageSetFontPointsize.shtml
https://www.mbsplugins.eu/GMImageGetWidth.shtml
https://www.mbsplugins.eu/GMImageAnnotate.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml
https://www.mbsplugins.eu/GMImageSetFont.shtml
https://www.mbsplugins.eu/GMImageSetFillColor.shtml
https://www.mbsplugins.eu/GMImageSetStrokeColor.shtml
https://www.mbsplugins.eu/GMImageSetLineWidth.shtml
https://www.mbsplugins.eu/GMImageSetFontPointsize.shtml
https://www.mbsplugins.eu/GMImageAnnotate.shtml

Now you can give your pictures a font I hope you enjoy it. See you
tomorrow

GraphicsMagick in FileMaker, part 11

Welcome to the 11th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
The GraphicsMagick also provides many
effects that we can apply to our
images. In the Advent calendar we
would like to introduce a few of these
effects. Today I will show you how to
add a noise effect to your image. So we
want to bring in a noise effect. For this
we have two functions that we can use.
We have the simpler function GMImage.AddNoise which adds a noise to
the image which we can define in the parameters. We have a total of 6
noise types that we can specify.

• UniformNoise = 0
• GaussianNoise = 1
• MultiplicativeGaussianNoise = 2
• ImpulseNoise = 3
• LaplacianNoise = 4
• PoissonNoise = 5

In the parameters we specify the appropriate number. In this script
line, for example, the noise type ImpulseNoise was selected.
Set Variable [$r ; Value: MBS("GMImage.AddNoise"; $GM;
3)]
On the following images a couple of the mentioned noise methods were
applied 3 times in a row.
First of all here is the original image

🎄
11 of 24

https://www.mbsplugins.de/archive/2022-12-11/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageAddNoise.shtml
https://www.mbsplugins.eu/GMImageAddNoise.shtml

The Gaussian noise mode was applied to this image

This image has the Laplacian noise mode applied

And for this image we use the impulse noise

But we can specify the noise even further. Noise is pixels that normally
do not belong to the image.

Here we intentionally apply them to an image as an effect. In
photography they are image noise caused for example by photo
sensors. You can further define the noise with the function
GMImage.AddNoiseChannel, for example you can show only the noise
pixels from the Red Channel. Thus we see here on the black only red

https://www.mbsplugins.eu/GMImageAddNoiseChannel.shtml

blinkers.

In the GMImage.AddNoiseChannel function, the noise selection is still
the same, but we also specify a channel in the function. You can choose
from these channels:

• RedChannel = 1
• CyanChannel = 2
• GreenChannel = 3
• MagentaChannel = 4
• BlueChannel = 5
• YellowChannel = 6
• OpacityChannel = 7
• BlackChannel = 8

https://www.mbsplugins.eu/GMImageAddNoiseChannel.shtml

• MatteChannel = 9
• AllChannels = 10
• GrayChannel = 11

The code then looks like this for RedChannel and ImpulseNoise noise:
 Set Variable [$r ; Value: MBS("GMImage.AddNoiseChannel";
$GM; 1; 3)]

I hope you enjoyed this and we will meet again tomorrow

https://www.mbsplugins.eu/GMImageAddNoiseChannel.shtml

GraphicsMagick in FileMaker, part 12

Welcome to the 12th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
The GraphicsMagick also provides many
effects that we can apply to our
images. In the Advent calendar we
would like to present a few of these
effects. Today I will show you the effect
that turns your image into an oil
painting. For this we use the function
GMImage.OilPaint. Here we have the
original image that we want to change.

🎄
12 of 24

https://www.mbsplugins.de/archive/2022-12-12/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageOilPaint.shtml

If we pass only the image reference to the GMImage.OilPaint function,
 Set Variable [$r ; Value: MBS("GMImage.OilPaint";$GM)]
our image will look like this.

https://www.mbsplugins.eu/GMImageOilPaint.shtml
https://www.mbsplugins.eu/GMImageOilPaint.shtml

Small circles are drawn around the pixels. This creates this oil dab
effect. But you can choose the brush thickness, that is the radii of the
circles, yourself.
 Set Variable [$r ; Value: MBS("GMImage.OilPaint";$GM;
30)]
Here you can see the effect in the different strengths 5, 10 and 30.

https://www.mbsplugins.eu/GMImageOilPaint.shtml

The effect is of course also very dependent on the image size due to the
radius. The image with double side length with a value of 10 looks
different like value 10 in a smaller image and is more similar to the
small image with a radius of 5.

So, for example, make a pretty big oil painting from a photo of you and
give it as a gift to your family. I wish you a lot of fun with it.

GraphicsMagick in FileMaker, part 13

Welcome to the 13th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
The GraphicsMagick also provides many
effects that we can apply to our
images. In the Advent calendar we
would like to introduce a few of these
effects. Today I will introduce you to
the Swirl effect. With this effect you
can turn the center of your image. We
use the function GMImage.Swirl for this
purpose. In the parameters we can
specify the reference and the angle by which the image should be
rotated.
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("GMImage.Swirl"; $GM;
-90)]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]

When we specify a positive value we create a counterclockwise rotation.

🎄
13 of 24

https://www.mbsplugins.de/archive/2022-12-13/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/component_GraphicsMagick.shtml
https://www.mbsplugins.eu/component_GraphicsMagick.shtml
https://www.mbsplugins.eu/GMImageSwirl.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageSwirl.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml

In case of a negative value, a clockwise rotation.

The effect is reversible. This means that if you first use the function
with a value of +90 degrees and then apply the function to the image
with -90 degrees, we will see the original image again. The function can
also be applied several times in succession.

I wish you a lot of fun turning the head of your portraits

GraphicsMagick in FileMaker, part 14

Welcome to the 14th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
The GraphicsMagick functions also
provides many effects that we can
apply to our images. In the Advent
Calendar we would like to introduce a
few of these effects. Today I will
introduce you to the Blur effect. With
this effect you blur the image. You can
use the function GMImage.Blur for this
purpose. We can pass three different
parameters to this function. First of all again our reference, then the
Radius of the Gaussian that means we specify the size of the radius
from which we get our information for the respective pixel. We also
specify the value Sigma, which is the standard deviation of the
Laplacian.
Set Variable [$r ; Value: MBS("GMImage.Blur"; $GM; 50;
10)]

The Blur effect is influenced by the combination of the last two
parameters, so you can vary these two parameters to your taste. Here
are examples of the variation of values.

🎄
14 of 24

https://www.mbsplugins.de/archive/2022-12-14/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/component_GraphicsMagick.shtml
https://www.mbsplugins.eu/GMImageBlur.shtml
https://www.mbsplugins.eu/GMImageBlur.shtml

However, we cannot only blur the image on all channels, but we can
also use the individual channels in the GMImage.BlurChannel function
to create a blur. To do this, we also specify the Channel Type
parameter. It can be one of our RGB channels or CMYK channels or the
BlackChannel.
Here you see the image once with blue channel and radius = 10 and
sigma = 10 on the left.

https://www.mbsplugins.eu/GMImageBlurChannel.shtml
https://www.mbsplugins.eu/GMImageBlurChannel.shtml

GraphicsMagick in FileMaker, part 15

Welcome to the 15th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Yesterday I introduced you to the Blur
effect. Today I will show you the
opposite effect: Sharpen. This effect
sharpens your image. We use the
GMImage.Sharpen function. Again we
have the same parameters as with the
Blur function. First our reference, then
the radius which indicates from which
area we use the information for the
effect and our sigma which describes the effect in more detail.
Set Variable [$r ; Value: MBS("GMImage.Sharpen"; $GM ; 10;
10)]

Here we see a few examples of how the effect can affect:

🎄
15 of 24

https://www.mbsplugins.de/archive/2022-12-15/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageSharpen.shtml
https://www.mbsplugins.eu/GMImageSharpen.shtml

By the way, the Sharpen effect cannot undo the Blur effect. If I first
apply a Blur effect and then apply a Sharpen effect with the same
values for Radius and Sigma, the result is not the same image as
before (left).

Radius = 10
Sigma = 10

Radius = 10
Sigma = 10

Radius = 10
Sigma = 10

red Channel
Radius = 10
Sigma = 10

blue Channel
Radius = 10
Sigma = 10

GraphicsMagick in FileMaker, part 16

Welcome to the 16th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Today I'll introduce you to the
GMImage.Channel function that allows
us to extract individual channels from
an image. We have already seen in
some effects that we can use individual
channels, whether we want to apply
blur or if we want to give the image a
noise with red pixels. Channels are a
great thing. Let's take a closer look at
them. In the function GMImage.Channel we first specify the reference
in the parameters and then the ChannelType. Each channel type is
assigned a number which must be specified in the parameters. Here we
see a list of channels that are available to us:

• RedChannel = 1
• CyanChannel = 2
• GreenChannel = 3
• MagentaChannel = 4
• BlueChannel = 5
• YellowChannel = 6
• OpacityChannel = 7
• BlackChannel = 8
• MatteChannel = 9
• AllChannels = 10
• GrayChannel = 11

🎄
16 of 24

https://www.mbsplugins.de/archive/2022-12-16/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageChannel.shtml

Channels 1,3 and 5 belong to the RGB color space, so that we can
successfully apply the GMImage.Channel function to the images, they
must be in the RGB color space or first converted with
GMImage.SetColorSpace.
Variable setzen [$r ; Wert: MBS("GMImage.SetColorSpace";
$GM; 1)]
Variable setzen [$r ; Wert: MBS("GMImage.Channel"; $GM;
3)]
Here you can see our logo in the individual RGB channels

https://www.mbsplugins.eu/GMImageChannel.shtml
https://www.mbsplugins.eu/GMImageSetColorSpace.shtml
https://www.mbsplugins.eu/GMImageSetColorSpace.shtml
https://www.mbsplugins.eu/GMImageChannel.shtml

Conversion to the correct color space is needed for the CMYK color
space for channels 2,4,6 and 8.
Variable setzen [$r ; Wert: MBS("GMImage.SetColorSpace";
$GM; 10)]
Variable setzen [$r ; Wert: MBS("GMImage.Channel"; $GM; 11
)]

Cyan (2)

https://www.mbsplugins.eu/GMImageSetColorSpace.shtml
https://www.mbsplugins.eu/GMImageChannel.shtml
https://www.mbsplugins.eu/GMImageSetColorSpace.shtml
https://www.mbsplugins.eu/GMImageChannel.shtml

Cyan (2)

Magenta (4)

Yellow (6)

Black (8)

GraphicsMagick in FileMaker, part 17

Welcome to the 17th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process. 🎄

17 of 24

https://www.mbsplugins.de/archive/2022-12-17/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker

Today it will be really colorful, at least today we want to try some
backgrounds for our logo. Our original image has a red background.
Now we want to replace it with another color. For this we use the
GMImage.ReplaceColor. In this function we have again our reference in
the parameters and then we specify the color that should be replaced.
We also specify a second color to replace the color we just defined. We
can also specify a factor for how much the color value that should be
replaced can deviate so that a replacement is performed. But for now
we want to ignore this optional parameter. In our image with the logo
the background has the color red. To be more precise #EB3D00 as
hexadecimal. We don't have anything else on the image that is red and
thus would be replaced as well. Now we want to replace the background
with green, so we specify #66CD00 as another color parameter. This
color describes a toxic green

https://www.mbsplugins.eu/GMImageReplaceColor.shtml

 Set Variable [$r ; Value: MBS("GMImage.ReplaceColor";
$GM; "#EB3D00"; "#66CD00")]

Of course we can do this with any colors

https://www.mbsplugins.eu/GMImageReplaceColor.shtml

If we give the whole thing a black background we can see it best.
Around the logo a very fine red border remains.

The reason is that the logo pixels mix slightly with the color of the
background to create a smooth transition in the image. Since these
pixels are not exactly the color we specified in the function, they are
not replaced the way the function is currently used. But we can change
this by defining a deviation factor for the exchange color value. This
factor must be multiplied by 257 since version 9 of the plugin uses 16-
bit values. So if we specify a tolerance of 1*257, the specified color in
your channel can deviate by 1. To make the red border disappear we
choose a 50*257
 Set Variable [$r ; Value: MBS("GMImage.ReplaceColor";
$GM; "#EB3D00"; "#000000"; 50 * 257)]

https://www.mbsplugins.eu/GMImageReplaceColor.shtml

I hope you enjoyed it again this time and now you bring a little buzz in
your pictures we'll see you again tomorrow. See you soon.

GraphicsMagick in FileMaker, part 18

Welcome to the 18th door of our
advent calendar. In this advent
calendar I would like to take you on a journey through the
GraphicsMagick component in December. Every day I will introduce you
to one or more functions from this component. In this component you
will find functions with which you can analyze images, convert them,
change them with filters, draw them and much much more. In the end,
you too can take the magic of GraphicsMagick to your images. I wish
you a lot of fun in the process.
Do you think that our monkey is a bit pale around the nose? Today we
want to change that, because we also have a function that can change
the saturation of an image. The GMImage.Modulate function. But not
only the saturation can this function influence but also the brightness of
the image and the hue. So we can change the HSB values of an image.
In the parameters we then specify the corresponding values. If one or
more of these three values should not be changed in an image, then we
write a 100 in the parameters. The 100 is the neutal value.
Set Variable [$r ; Value: MBS("GMImage.Modulate"; $GM;
100; 100; 100)]

🎄
18 of 24

https://www.mbsplugins.de/archive/2022-12-18/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageModulate.shtml
https://www.mbsplugins.eu/GMImageModulate.shtml

Brightness and saturation are relatively easy to understand if we set
the brightness to a value greater than 100 then the image becomes
brighter and if the value is less than 100 then it becomes darker.
Similarly, if the saturation is greater than 100, the saturation will be
higher, and if it is less than 100, the saturation will be lower. We can
move within the value range from 0 to 200. With the Hue factor it is not
so clear what we are actually doing. Here, too, the values move
between 0 and 200. We are familiar from many programs that we can
specify colors with the help of the color wheel.
The color can be determined on this color wheel by 3 values. Once the
brightness of the circle, this would be determined by the slider under
the color circle, the saturation of the color, we determine this by the
position of the point inside the circle. The more we come to the outer
part of the circle the stronger is the saturation. Our hue is determined
by the angle on the color circle. The three values together then describe
a color. So if we enter a value of Hue <100, we have to imagine that
we rotate all colors on the image in our color circle clockwise. If we
enter a number greater than 100 then we rotate counterclockwise by a
certain value. We don't work with degrees, but with values between 0
and 200 because 100 is the neutral value. If you want to work with
degree numbers you have to convert the value accordingly (degree
number/1.8). Let's have a look at the monkey. We want to move 90
degrees clockwise on the color wheel in our image. That means first we
calculate 90/1.8 which results in 50. Since we want to move clockwise
on the color circle we must now subtract the 50 from the normal value
of 100. We get an input of 50, which we can then pass to the function.
Before we try this out, let's mentally reproduce this. If we take the red
of our background and move it clockwise by 90 degrees on the color
circle, we get a purple background. And if we now send the image
through the function we see it works.

If we would move our original image 90 degrees counterclockwise on
the color wheel (Hue=150) our background would be green. Of course,

as you can see, we do this not only with the background, but with every
pixel in the image.

So that you can try out the function to your heart's content, three fields
have been added to the sample project where you can enter the values
for Saturation Brightness and Hue yourself.

The corresponding script looks like this:
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("GMImage.Modulate"; $GM;
GraphicsMagick Advent::brightness; GraphicsMagick
Advent::saturation; GraphicsMagick Advent::Hue)]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToContainer"; $GM ; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]
Set Field [GraphicsMagick Advent::Hue ; 100]
Set Field [GraphicsMagick Advent::brightness ; 100]
Set Field [GraphicsMagick Advent::saturation ; 100]
Finally, we see that the field values for the three parameters are set
back to the normal value of 100 so that you can reset them if
necessary.

Here you can see again how the individual values behave at 50, 100
and 150.

https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageModulate.shtml
https://www.mbsplugins.eu/GMImageWriteToContainer.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml

Brightness:

Saturation:

Hue:

Of course, a combination of the values is also possible. Here you can
see the difference when all values are set to 50, 100 and 150.

I hope you enjoyed it and I will see you again tomorrow. I wish you a
happy fourth advent Sunday.

GraphicsMagick in FileMaker, part 19

Welcome to the 19th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process. 🎄

19 of 24

https://www.mbsplugins.de/archive/2022-12-19/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker

We have already seen in door 2 that we can query some information
about an image. If we have photos, but also the metadata created by
the device when taking the picture are very interesting. Today I want to
show you how you can retrieve some of this information.
We use the functions GMImage.GetAttribute for this purpose. But
before we start with this function I would like to introduce you to name
related functions. On the one hand we have the
GMImage.GetAttributesJSON function. It returns the attributes that
have been created before as JSON.
Set Variable [$JSON ; Value:
MBS("GMImage.GetAttributesJSON"; $GM)]
In the image we can see in the field how this JSON can look like.

These values can then be read out with the JSON function of FileMaker
or the plugin.
If we want to have the names of the single attributes we can use the
GMImage.GetAttributeNames. For example, we can output the attribute
names in a dialog. These are returned by the function as a list.
Show Custom Dialog ["Attribute names" ;
MBS("GMImage.GetAttributeNames";$GM)]

https://www.mbsplugins.eu/GMImageGetAttribute.shtml
https://www.mbsplugins.eu/GMImageGetAttributesJSON.shtml
https://www.mbsplugins.eu/GMImageGetAttributesJSON.shtml
https://www.mbsplugins.eu/component_JSON.shtml
https://www.mbsplugins.eu/GMImageGetAttributeNames.shtml
https://www.mbsplugins.eu/GMImageGetAttributeNames.shtml

We see when we open the info of the image on the computer that there
is still a lot of information behind it that we don't get through the JSON.
This is because in both functions only attributes created before are
visible, so e.g. EXIF data may not yet be loaded and parsed. But with
the GMImage.GetAttribute function we can retrieve EXIF data by
specifically querying the individual attributes. In the function we first
specify our reference and then the name of the attribute. Optionally we
can specify the encoding of the text. As return we get our value to the
matching attribute. If we want to retrieve a value from the EXIF data, it
is not enough to specify the tag name, but we have to specify the tag
further, so that the attribute name has the following
form:EXIF:Attribute tag
In our example we have stored a list of some possible EXIF attribute
names.

https://www.mbsplugins.eu/GMImageGetAttribute.shtml

In our example we go through this list and append the tag and the
corresponding value to the result string which we then output in a field.
Here is the code for this:
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$tags ; Value:
"GPSLatitudeRef¶GPSLatitude¶GPSLongitudeRef¶GPSLongitude¶
GPSAltitudeRef¶GPSAltitude¶GPSTimeStamp¶GPSSatellites¶GPSSta
tus¶GPSMeasureMode¶GPSDOP¶
GPSSpeedRef¶GPSSpeed¶GPSTrackRef¶GPSTrack¶GPSImgDirectionRef
¶GPSImgDirection¶
GPSMapDatum¶GPSDestLatitudeRef¶GPS..."]

Set Variable [$count ; Value: ValueCount ($tags)]
Set Variable [$index ; Value: 1]
Set Variable [$result ; Value: ""]
Loop
 # get the property name from the list
 Set Variable [$tag ; Value: GetValue ($tags;
$index)]
 # Get the value of the property
 Set Variable [$value ; Value:
MBS("GMImage.GetAttribute"; $GM; "EXIF:" & $tag)]
 If [$value ≠ "unknown"]
 # add the property and the value to the result
 Set Variable [$result ; Value: $result & $tag & ":
" & $value & "¶"]

https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageGetAttribute.shtml

 End If
 Set Variable [$index ; Value: $index +1]
 Exit Loop If [$index > $count]
End Loop
Set Field [GraphicsMagick Advent::Result ; $result]
Set Variable [$r ; Value: MBS("GMImage.Free"; $GM)]

We then first look how many entries we have in this list. Set our index
to 1 because we start with a FileMaker list with an index of 1. In the
loop we get each Tag from the list, put the string together appropriately
in the function call and then get the appropriate value. We can see that
in this line:
Set Variable [$value ; Value: MBS("GMImage.GetAttribute";
$GM; "EXIF:" & $tag)]
If we have a value that is not unknown, then we append this
information to our result.

When the loop is finished, we write the result text in the field and
release our reference.

I hope you enjoyed this door and I will see you again tomorrow.

https://www.mbsplugins.eu/GMImageFree.shtml
https://www.mbsplugins.eu/GMImageGetAttribute.shtml

GraphicsMagick in FileMaker, part 20

Welcome to the 20th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Today I want to show you that with
GraphicsMagick you can not only edit
images, but we can also draw by
ourselves. Today I will introduce you to
the basic shapes.
To have a working environment on
which we can work, we first use the
GMImage.New function. This creates a
working environment for us. We
determine the size and the background color in the parameters. Here
we draw a working environment of 500x500 pixels and a white
background color.
Set Variable [$GM ; Value: MBS("GMImage.New"; "500x500";
"#FFFFFF")]
We have several basic shapes available in the plugin:

• Line
• Circle
• Ellipse
• Rectangle
• Rounded rectangle
• Arc

I will show you these shapes one after the other.
So that you can bring color directly into action in our example I would
like to show you again briefly the functions for the color which you have
already learned in the text annotation on pictures.

🎄
20 of 24

https://www.mbsplugins.de/archive/2022-12-20/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/component_GraphicsMagick.shtml
https://www.mbsplugins.eu/GMImageNew.shtml
https://www.mbsplugins.eu/GMImageNew.shtml

We have the line color that we can set. We specify the reference and
the color, here the line color is red.
Set Variable [$r ; Value: MBS("GMImage.SetStrokeColor";
$GM; "#FF0000")]

Then we have the fill color, which is the color with which our figures will
be filled. Here a blue.
Set Variable [$r ; Value: MBS("GMImage.SetFillColor"; $GM;
"#0000FF")]

And we have the line thickness that we can set.
Set Variable [$r ; Value: MBS("GMImage.SetLineWidth"; $GM;
10)]

Let's start with the line. For this we have the function
GMImage.DrawLine. In the parameters we define the two points with
their coordinates that should be connected. The origin of the coordinate
system is in the upper left corner. This means that the higher the x
value, the more we move to the right. For the y value, the larger it
gets, the more we move down. You can also use the function
GMImage.TransformOrigin to move the coordinate origin, but I don't
want to do that now. In the script step you see here we connect the
points (50/50) and (250/350) with each other.
Set Variable [$r ; Value: MBS("GMImage.DrawLine"; $GM; 50;
50; 250; 350)]
Our result is a line that slopes from top left to bottom right.

https://www.mbsplugins.eu/GMImageSetStrokeColor.shtml
https://www.mbsplugins.eu/GMImageSetFillColor.shtml
https://www.mbsplugins.eu/GMImageSetLineWidth.shtml
https://www.mbsplugins.eu/GMImageDrawLine.shtml
https://www.mbsplugins.eu/GMImageTransformOrigin.shtml
https://www.mbsplugins.eu/GMImageDrawLine.shtml

Next we come to the circle. For this we use the GMImage.DrawCircle
function. We first set the coordinates for the circle center. In our
example we want to have it in the center of our workspace (250/250).
Also, we set a point that is on the outer surface of the circle. I would
like to have a circle of 150 pixels radius (300 px diameter). So the point
100/100 is on my circle outer circle. I also specify this in the
parameters.
Set Variable [$r ; Value: MBS("GMImage.DrawCircle";$GM;
250; 250; 100; 100)]
Our circle look like that

https://www.mbsplugins.eu/GMImageDrawCircle.shtml
https://www.mbsplugins.eu/GMImageDrawCircle.shtml

We define the ellipse with the GMImage.DrawEllipse function. Again, we
first define the center of the ellipse. With the next value we determine
the radius to the right and left to the ellipse edge (100) and with the
following parameter (140) the radius of the ellipse to the top and
bottom. With the last two parameters we can specify how much of the
ellipse should be drawn. So we specify the segment of the circle. If we
have a complete ellipse, we specify 0 as the start angle and 360 as the
target angle.
Set Variable [$r ; Value: MBS("GMImage.DrawEllipse"; $GM;
250; 250; 100; 140; 0; 360)]

https://www.mbsplugins.eu/GMImageDrawEllipse.shtml
https://www.mbsplugins.eu/GMImageDrawEllipse.shtml

If we give the ellipse a start angle of 0 and a target angle of 180 then
our ellipse looks like this

Then we have our rectangle and our rounded rectangle. The functions
for these shapes are similar. Let's start with the simpler function for the
rectangle. For this we use the GMImage.DrawRectangle function. We
define the rectangle by first specifying the upper left corner of the
rectangle (50/50) and then the lower right corner (400/350).
Set Variable [$r ; Value: MBS("GMImage.DrawRectangle";
$GM; 50; 50; 400; 350)]

https://www.mbsplugins.eu/GMImageDrawRectangle.shtml
https://www.mbsplugins.eu/GMImageDrawRectangle.shtml

The difference between a rectangle and a rounded rectangle are the
four rounded corners. We can create such a rectangle with the
GMImage.DrawRoundRectangle function. The first parameters are the
same as the rectangle (upper left corner and lower left corner) and the
last two parameters specify the radius of the corners.
Set Variable [$r ; Value: MBS("GMImage.DrawRoundRectangle";
$GM; 50; 50; 450; 450; 10; 10)]

https://www.mbsplugins.eu/GMImageDrawRoundRectangle.shtml
https://www.mbsplugins.eu/GMImageDrawRoundRectangle.shtml

The arc is a bit more complicated. An arc is a section of an ellipse and
we use the GMImage.DrawArc function to draw it. Here we first define a
box in which an ellipse would fit exactly. The last two parameters
describe what we see of the ellipse. To illustrate this, I have defined 4
individual arcs, each of which has been assigned a different color.
Set Variable [$GM ; Value: MBS("GMImage.New"; "500x500";
"#FFFFFF")]

Set Variable [$r ; Value: MBS("GMImage.SetStrokeColor";
$GM; "#FF0000")]
Set Variable [$r ; Value: MBS("GMImage.SetFillColor"; $GM;
"#0000FF")]
Set Variable [$r ; Value: MBS("GMImage.SetLineWidth"; $GM;
10)]

https://www.mbsplugins.eu/GMImageDrawArc.shtml
https://www.mbsplugins.eu/GMImageNew.shtml
https://www.mbsplugins.eu/GMImageSetStrokeColor.shtml
https://www.mbsplugins.eu/GMImageSetFillColor.shtml
https://www.mbsplugins.eu/GMImageSetLineWidth.shtml

Set Variable [$r ; Value: MBS("GMImage.DrawArc"; $GM; 100;
100; 300; 250; 0; 90)]

Set Variable [$r ; Value: MBS("GMImage.SetStrokeColor";
$GM; "#FFFF00")]
Set Variable [$r ; Value: MBS("GMImage.DrawArc"; $GM; 100;
100; 300; 250; 90; 180)]

Set Variable [$r ; Value: MBS("GMImage.SetStrokeColor";
$GM; "#00FF00")]
Set Variable [$r ; Value: MBS("GMImage.DrawArc"; $GM; 100;
100; 300; 250; 180; 270)]

Set Variable [$r ; Value: MBS("GMImage.SetStrokeColor";
$GM; "#0000FF")]
Set Variable [$r ; Value: MBS("GMImage.DrawArc"; $GM; 100;
100; 300; 250; 270; 360)]
To clarify the box that defines the size of the ellipse, it is drawn in
black.

https://www.mbsplugins.eu/GMImageDrawArc.shtml
https://www.mbsplugins.eu/GMImageSetStrokeColor.shtml
https://www.mbsplugins.eu/GMImageDrawArc.shtml
https://www.mbsplugins.eu/GMImageSetStrokeColor.shtml
https://www.mbsplugins.eu/GMImageDrawArc.shtml
https://www.mbsplugins.eu/GMImageSetStrokeColor.shtml
https://www.mbsplugins.eu/GMImageDrawArc.shtml

To get our image displayed correctly we use the function
GMImage.WriteToPNGContainer to save the graphic environment as
PNG image.
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToPNGContainer"; $GM; "abc.png")]
I hope you enjoyed it again this time and will join us tomorrow when
we open the next door.

https://www.mbsplugins.eu/GMImageWriteToPNGContainer.shtml
https://www.mbsplugins.eu/GMImageWriteToPNGContainer.shtml

GraphicsMagick in FileMaker, part 21

Welcome to the 21st door of our advent
calendar. In this advent calendar I
would like to take you on a journey
through the GraphicsMagick component
in December. Every day I will introduce
you to one or more functions from this
component. In this component you will
find functions with which you can
analyze images, convert them, change
them with filters, draw them and much
much more. In the end, you too can
take the magic of GraphicsMagick to
your images. I wish you a lot of fun in
the process.
Yesterday we already looked at how we
can draw with the basic shapes in
GraphicsMagick. Today we would like to
draw our own shapes. For this we have
some functions in the plugin that we
can use. We will draw our own shapes
with paths. Let's imagine a pen. We tell
this pen where it is and where it goes.
Let's draw a triangle together. To do
this, we first need to move our pen to the start position. For this we use
the function GMImage.AddPathMovetoAbs in the parameters we specify
the start coordinates for our point (50/50) in addition to the reference.
Set Variable [$r ; Value: MBS("GMImage.AddPathMovetoAbs";
$GM; 50; 50)]
We have now specified an absolute position because we want to start
exactly at these coordinates. But if you have a look at the
documentation of GraphicsMagick you will notice that there is also a
very similar function called GMImage.AddPathMovetoRel. The difference
between these two functions is that we specify the absolute coordinates
(the exact point where we want to place the pen) or the relative
coordinates. The relative coordinates describe where the point is in
relation to the old position. This means for example if we have a
Relative Coordinate (1/1) we go one unit to the right and one unit down
from the point where we are currently located. Most path drawing
functions from the MBS FileMaker Plugin occur twice with this
difference.

🎄
21 of 24

https://www.mbsplugins.de/archive/2022-12-21/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageAddPathMovetoAbs.shtml
https://www.mbsplugins.eu/GMImageAddPathMovetoAbs.shtml
https://www.mbsplugins.eu/GMImageAddPathMovetoRel.shtml
https://www.monkeybreadsoftware.com/filemaker/

We want to draw a line from the point where we are now (50/50)
straight down and this line should be 300 pixels long. For this we use
the GMImage.AddPathLinetoRel function which expects a relative
coordinate from us. So we specify that our coordinate is located 0 pixels
to the right from our position and 300 pixels below our position.
Set Variable [$r ; Value: MBS("GMImage.AddPathLinetoRel";
$GM; 0; 300)]
Our third triangle coordinate should now be at 400/350. So this time we
use the function GMImage.AddPathLinetoAbs and pass it the Absolute
Coordinate.
Set Variable [$r ; Value: MBS("GMImage.AddPathLinetoAbs";
$GM; 400; 350)]
We have described our three corner coordinates and connected them
with two lines. Now we only have to connect the last corner point with
the starting point again. For this we can use the already known
functions, or we can use the function GMImage.AddPathClosePath
which connects the point where our pen is currently located with the
starting point.
Set Variable [$r ; Value: MBS("GMImage.AddPathClosePath";
$GM)]
If we exported our graphics environment into the container like this, we
would see that we don't see anything, because we have already
prepared the path, but this path is first drawn with the function
GMImage.DrawPath.
Set Variable [$r ; Value: MBS("GMImage.DrawPath"; $GM)

https://www.mbsplugins.eu/GMImageAddPathLinetoRel.shtml
https://www.mbsplugins.eu/GMImageAddPathLinetoRel.shtml
https://www.mbsplugins.eu/GMImageAddPathLinetoAbs.shtml
https://www.mbsplugins.eu/GMImageAddPathLinetoAbs.shtml
https://www.mbsplugins.eu/GMImageAddPathClosePath.shtml
https://www.mbsplugins.eu/GMImageAddPathClosePath.shtml
https://www.mbsplugins.eu/GMImageDrawPath.shtml
https://www.mbsplugins.eu/GMImageDrawPath.shtml

Our corners are now very sharp if we prefer to round these corners we
can use the GMImage.SetStrokeLineJoin function. Here we have a
selection from

• UndefinedJoin = 0
• MiterJoin = 1
• RoundJoin = 2
• BevelJoin = 3

Miter Join is where the lines meet in the middle and form sharp edges
as we have just seen.
Round Join rounds off the edges

https://www.mbsplugins.eu/GMImageSetStrokeLineJoin.shtml

The bevel join creates an additional beveled edge
Set Variable [$r ; Value: MBS("GMImage.SetStrokeLineJoin";
$GM; 2)]

https://www.mbsplugins.eu/GMImageSetStrokeLineJoin.shtml

We can draw not only straight lines but also curves. We want to draw a
cubic Bezier curve and for this we use the function
GMImage.AddPathCurvetoAbs. We give this function three points. The
first control point (100/300), the second control point (300/100) and
the end point (300/300). We don't need to specify the start point,
because we already have it by the position of our pen.
Set Variable [$r ; Value: MBS("GMImage.AddPathCurvetoAbs";
$GM; 100; 300; 300; 100; 300; 300)]

https://www.mbsplugins.eu/GMImageAddPathCurvetoAbs.shtml
https://www.mbsplugins.eu/GMImageAddPathCurvetoAbs.shtml

I hope you enjoyed this door and see you tomorrow again for the 22th
door of our Advent calendar until then I hope you have fun with your
drawings.

GraphicsMagick in FileMaker, part 22

Welcome to the 22th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Today I show you how you can
combine pictures. It's almost Christmas
and our monkey is still missing the
right costume. This we want to put on
him today. The Christmas hat is on a
separate PNG image. That means we
want to put the image with the
Christmas hat on top of the image with
our logo. For this we can choose from
two functions GMImage.Composite and GMImage.CompositeXY. I would
like to introduce the GMImage.Composite function first. First we specify
the reference in which we want to have the result in our case this is the
reference of the logo. Next is the reference of the image or workspace
we want to combine with the image, in our case an image of the cap.
The next parameter refers to how the second image is arranged to the
first one. Our two images are the same size, so it makes no difference
for us the way the two images are positioned in relation to each other,
but if the images are different in size, for example the second image is
smaller than the first, then it makes a difference whether we align the
image to the upper left corner or centered. The following options are
available to us:

• ForgetGravity=0
• NorthWestGravity=1
• NorthGravity=2
• NorthEastGravity=3
• WestGravity=4

🎄
22 of 24

https://www.mbsplugins.de/archive/2022-12-22/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageComposite.shtml
https://www.mbsplugins.eu/GMImageCompositeXY.shtml
https://www.mbsplugins.eu/GMImageComposite.shtml

• CenterGravity=5
• EastGravity=6
• SouthWestGravity=7
• SouthGravity=8
• SouthEastGravity=9
• StaticGravity=10

Here we see on the small box we put over the logo how the Gravity
behaves:
CenterGravity=5

NorthWestGravity=1

Optionally, we can now specify how the two images should be
combined. We can choose from the following options:

• UndefinedCompositeOp = 0
• OverCompositeOp = 1
• InCompositeOp = 2
• OutCompositeOp = 3
• AtopCompositeOp = 4
• XorCompositeOp = 5
• PlusCompositeOp = 6
• MinusCompositeOp = 7
• AddCompositeOp = 8
• SubtractCompositeOp = 9

• DifferenceCompositeOp = 10
• MultiplyCompositeOp = 11
• BumpmapCompositeOp = 12
• CopyCompositeOp = 13
• CopyRedCompositeOp = 14
• CopyGreenCompositeOp = 15
• CopyBlueCompositeOp = 16
• CopyOpacityCompositeOp = 17
• ClearCompositeOp = 18
• DissolveCompositeOp = 19
• DisplaceCompositeOp = 20
• ModulateCompositeOp = 21
• ThresholdCompositeOp = 22
• NoCompositeOp = 23
• DarkenCompositeOp = 24
• LightenCompositeOp = 25
• HueCompositeOp = 26
• SaturateCompositeOp = 27
• ColorizeCompositeOp = 28
• LuminizeCompositeOp = 29
• CopyCyanCompositeOp = 32
• CopyMagentaCompositeOp = 33
• CopyYellowCompositeOp = 34
• CopyBlackCompositeOp = 35
• DivideCompositeOp = 36

We will not look at all of these options today, but if you have a general
interest in how the other options work, please take a look at the
Combine Pictures example. The following pictures are also taken from
this example
Let's start with the default value. This is InCompositeOp (2). With this
composition we put the second image on top of the first one. The alpha
channel information of image 2 is completely ignored and interpreted as
white.

With LightenCompositeOp (27) we get the effect of a watermark. The
image background becomes lighter in the places where there is color on
the superimposed image, depending on the color value.

The situation is similar to DarkenCompositeOp. Here it is darkened
depending on the color.

The most frequently used option is probably OverCompositeOp (1) This
option applies image two to image 1, taking care of the alpha channel
information. We also use this option to put the cap on our monkey. Our
script looks like this:
Set Variable [$GMLogo ; Value:
MBS("GMImage.NewFromContainer"; GraphicsMagick Advent::Logo)
]
Set Variable [$GMCap ; Value:
MBS("GMImage.NewFromContainer"; GraphicsMagick
Advent::Cap)]
Set Variable [$r ; Value: MBS("GMImage.Composite";$GMLogo;
$GMCap; 1; 1)]

Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToPNGContainer"; $GMLogo; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]

So now our result image looks like this:

https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageComposite.shtml
https://www.mbsplugins.eu/GMImageWriteToPNGContainer.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml

We have just said that in addition to the GMImage.Composite function
we can also use the GMImage.CompositeXY. Here, image2 will be
placed on image1 with the help of an offset, specifying X and Y. So we
don't need to specify the Gravity we used in the GMImage.Composite
function. Instead we specify how we want to move image 2 in relation
to the upper left corner of image 1. Our monkey still has some hair
coming out of the top of the hat, we want to change this by moving the
image in negative Y direction by 5 pixels. By the way, nothing changes
in the overlay options, they are the same. Here we see the appropriate
code:
Set Variable [$GMLogo ; Value:
MBS("GMImage.NewFromContainer"; GraphicsMagick Advent::Logo)
]

https://www.mbsplugins.eu/GMImageComposite.shtml
https://www.mbsplugins.eu/GMImageCompositeXY.shtml
https://www.mbsplugins.eu/GMImageComposite.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml

Set Variable [$GMCap ; Value:
MBS("GMImage.NewFromContainer"; GraphicsMagick
Advent::Cap)]

Set Variable [$r ; Value: MBS("GMImage.CompositeXY";
$GMLogo; $GMCap; 0; -5 ; 1)]

Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToPNGContainer"; $GMLogo; "abc.png")]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]

Now the monkey's cap also fits perfectly.

I hope you liked the door and see you tomorrow.

https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageCompositeXY.shtml
https://www.mbsplugins.eu/GMImageWriteToPNGContainer.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml

GraphicsMagick in FileMaker, part 23

Welcome to the 23th door of our
advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Today I'm going to show you how to
reduce the size of your image files. If
you want to store images in your
database, images often consume a lot
of space. But sometimes the images
don't have to be that huge, because
you only want to display them in a
container.
On one hand, if available, you can use the function
"GMImage.ExifThumbnail" to retrieve the thumbnail and write it to the
database instead of the original image. But with many images the
thumbnail cannot be retrieved easily and an error occurs or we get back
an empty value. So this case we should catch for sure.
...
Set Variable [$IMG ; Value: MBS("GMImage.ExifThumbnail";
$GM; "abc.jpg")]
If [MBS("IsError") or $IMG=""]
 Show Custom Dialog ["Error" ; "Thumbnail cannot be
retrieved¶" & $IMG]
 Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]
 Exit Script [Text Result:]
End If
Set Field [GraphicsMagick Advent::Image ; $IMG]
...

🎄
23 of 24

https://www.mbsplugins.de/archive/2022-12-23/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/GMImageExifThumbnail.shtml
https://www.mbsplugins.eu/GMImageExifThumbnail.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml

Of course, we always have the possibility to scale our image, which
means to change its physical size. How this works in detail we have
seen in door 5.

But we don't necessarily have to change the physical size to make our
file smaller. For example, you can save an image as grayscale instead
of RGB. This has the advantage that the color information in the
grayscale is more compact. In an RGB pixel we have to store 24 bits of
information (8 bit red, 8 bit green and 8 bit blue) for each pixel. In
grayscale it is 8 bit. For this reason, the size is drastically reduced when
we display the image in grayscale.
...
Set Variable [$r ; Value: MBS("GMImage.SetType"; $GM;
3)]
...

https://www.mbsplugins.eu/GMImageSetType.shtml

You can find more information about this function in door 8. Note that
not every image that looks gray is also saved in the grayscale color
space. Even in the RGB color space, an image can only have colors that
are gray. So if you get an image from a scanner, don't count on the
image being in grayscale format. You can also convert the image
directly to black and white instead of grayscale format, which also
saves memory. For this you use the same function as for grayscale,
only this time you put a 1 in the parameters instead of the 3. This
formats the image to black and white
Set Variable [$r ; Value: MBS("GMImage.SetType"; $GM;
1)]

https://www.mbsplugins.eu/GMImageSetType.shtml

Another thing that can reduce the size of the image without having to
physically reduce the size of the image and without having to sacrifice
color is setting the quality of a JPEG image. A JPEG image has a built-in
compression and we can now set the level of compression via the
quality. For this we use GMImage.SetQuality function to set the
compression level. If we don't use this function before we save the
image as JPEG the default value is 75. Here you can see that we set the
compression level to 50 before we write the image as JPEG back into
the container.
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$r ; Value: MBS("GMImage.SetQuality"; $GM;
50)]
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToJPEGContainer"; $GM)]
Set Variable [$r ; Value: MBS("GMImage.Release"; $GM)]

https://www.mbsplugins.eu/GMImageSetQuality.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageSetQuality.shtml
https://www.mbsplugins.eu/GMImageWriteToJPEGContainer.shtml
https://www.mbsplugins.eu/GMImageRelease.shtml

These reduction mechanisms can also be combined with each other.
You can see this for example here with the image. First we reduced the
physical size, then the image was converted into a grayscale image and
then with a quality of 50 converted into a JPEG image.

Here you must be careful that sometimes the mechanisms do not work
well together, for example, if you convert a JPEG image into a black and
white image, the file size may even increase.
I hope you liked this door and it helps you. Be happy to join us
tomorrow when we open the last door where the whole thing becomes
round.

GraphicsMagick in FileMaker, part 24

Welcome to the 24th and last door of
our advent calendar. In this advent
calendar I would like to take you on a
journey through the GraphicsMagick
component in December. Every day I
will introduce you to one or more
functions from this component. In this
component you will find functions with
which you can analyze images, convert
them, change them with filters, draw
them and much much more. In the
end, you too can take the magic of
GraphicsMagick to your images. I wish
you a lot of fun in the process.
Today I will show you how to turn a
rectangular image into a round one. To
say it at the beginning. There is no
such thing as a round image. The
illusion that an image is round is
created by the alpha channel. This
means that certain areas are
transparent.
First, we load the image from the
container again and determine the width and height of the image.
Set Variable [$GM ; Value: MBS("GMImage.NewFromContainer";
GraphicsMagick Advent::Image)]
Set Variable [$Width ; Value: MBS("GMImage.GetWidth";
$GM)]
Set Variable [$Height ; Value: MBS("GMImage.GetHeight";
$GM)]
We first need the image as a square. So we determine the size of the
shorter of the two sides. For this, we distinguish our procedure for
Landscape and Portrait mode. With the function "GMImage.Crop" we
crop the image as we already know it from door 7.

If [$Width>$Height]
 # Landscape
 Set Variable [$SizeGeometry ; Value: $Height & "x" &
$Height]
 Set Variable [$Size ; Value: $Height]
 Set Variable [$OffsetX ; Value: ($Width - $Height) /
2]

🎄
24 of 24

https://www.mbsplugins.de/archive/2022-12-24/GraphicsMagick_in_FileMaker_pa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/component_GraphicsMagick.shtml
https://www.mbsplugins.eu/GMImageNewFromContainer.shtml
https://www.mbsplugins.eu/GMImageGetWidth.shtml
https://www.mbsplugins.eu/GMImageGetHeight.shtml
https://www.mbsplugins.eu/GMImageCrop.shtml

 Set Variable [$OffsetY ; Value: 0]
Else
 # Portarait
 Set Variable [$SizeGeometry ; Value: $Width & "x" &
$Width]
 Set Variable [$Size ; Value: $Width]
 Set Variable [$OffsetX ; Value: 0]
 Set Variable [$OffsetY ; Value: ($Height - $Width) / 2
]
End If
Set Variable [$Geometry ; Value: $SizeGeometry & "+"
&$OffsetX& "+" &$OffsetY]
Set Variable [$r ; Value: MBS("GMImage.Crop"; $GM;
$Geometry)]
This way, our image is now already cut square.

https://www.mbsplugins.eu/GMImageCrop.shtml

Next, we create a new GraphicsMagick workspace with a transparent
background. In this environment we draw a black circle with the
diameter of our square. Accordingly, the radius we have to specify for
drawing is $Size/2
Set Variable [$Cut ; Value: MBS("GMImage.New";$Size & "x" &
$Size; "transparent")]
Set Variable [$r ; Value: MBS("GMImage.SetFillColor";
$Cut;"black")]
Set Variable [$radius ; Value: $Size/2]
Set Variable [$r ; Value: MBS("GMImage.DrawCircle";$Cut;
$radius;$radius;0;$radius)]

This black circle defines the image section that we want to see later
from the other image. That is why it is so important that the
background of our circle is also transparent. On December 22nd we
have already learned about the function GMImage.CompositeXY and we

https://www.mbsplugins.eu/GMImageNew.shtml
https://www.mbsplugins.eu/GMImageSetFillColor.shtml
https://www.mbsplugins.eu/GMImageDrawCircle.shtml
https://www.mbsplugins.eu/GMImageCompositeXY.shtml

know that this function is very powerful. We use it again today. We put
the image we want to see on our circle with option 2. We don't have an
offset, because the images have the same size. With this combination
we only see the pixels from the image where our circle is. The
transparent pixels are not overwritten. Our desired result is then in the
workspace $Cut.
Set Variable [$r ; Value: MBS("GMImage.CompositeXY"; $Cut;
$GM; 0; 0 ; 2)]
Finally we write our working environment $Cut with the function
GMImage.WriteToPNGContainer into the container that shows us our
round image. At the end we must not forget to release the various
working environments.
Set Field [GraphicsMagick Advent::Image ;
MBS("GMImage.WriteToPNGContainer"; $Cut)]
Set Variable [$r ; Value: MBS("GMImage.ReleaseAll")]

https://www.mbsplugins.eu/GMImageCompositeXY.shtml
https://www.mbsplugins.eu/GMImageWriteToPNGContainer.shtml
https://www.mbsplugins.eu/GMImageWriteToPNGContainer.shtml
https://www.mbsplugins.eu/GMImageReleaseAll.shtml

Now we have reached the advent. I hope you enjoyed it and you can
use one or the other of what we have shown here in your everyday
work. If you have any questions about these or other features, please
feel free to contact us.
Until then, we wish you a Merry Christmas and a Happy New Year.

Download sample project

http://mbs-plugins.com/image/GraphicsMagick%20Advent.fmp12

